Abstract
AbstractRecent calculations of the neutrino fluxes and spectra from pulsar magnetospheres and wind nebulae are reviewed. The neutrinos, produced in pp and pγ collisions via pion decays, are a signature of TeV ions accelerated electrostatically in the magnetosphere, in the wind termination shock (Fermi), or in the wind neutral sheet (wave surfing and/or reconnection). The fluxes and spectra are related to the energy and density of the accelerated ion beam and the densities of the target species, thereby constraining ion-loaded pulsar wind models originally developed to explain the variable wisps in pulsar-driven supernova remnants. The neutrino signal may be detectable by km2 telescopes (e.g. IceCube) and is correlated with TeV γ-ray emission. Related sources are also reviewed, such as early-phase post-supernova pulsar winds, pulsar-driven γ-ray-burst afterglows, and accreting neutron stars. The possibility of long baseline oscillation experiments, to search for fine splitting of neutrino mass eigenstates and non-radiative neutrino decays, is noted.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have