Abstract

Theoretical and experimental arguments suggest that the mean mass density of our universe is close to the closure value and that most of the mass in the universe consists of weakly interacting non-baryonic particles. Among the plethora of candidates that have been proposed as the dark matter, the neutrino remains the only particle known to exist, even though the issue of a neutrino mass remains unresolved. It was shown several years ago that neutrinos alone cannot provide the dark matter because physical processes in the early universe would have wiped out primordial density fluctuations on the scale of galaxies and below. The idea that cosmic strings or textures may seed galaxy formation in a neutrino-dominated universe has not yet been demonstrated to be viable. On the other hand, a model in which the bulk of the dark matter is cold and neutrinos with a mass ofca. 10 eV provide aca. 30% contribution can, in principle, overcome many of the objections against the standard cold dark matter cosmogony. Although subject to the usual ‘fine-tuning’ criticism, these mixed dark matter models represent the best cosmological argument in favour of a non-zero rest mass for the neutrino.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.