Abstract

Electron capture can determine the electron neutrino mass, while the beta decay of Tritium measures the electron antineutrino mass and the neutrinoless double beta decay observes the Majorana neutrino mass. Electron capture e. g. on 163Ho plus bound electron to 163Dy* plus neutrino can determine the electron neutrino mass from the upper end of the decay spectrum of the excited Dy*, which is given by the Q-Value minus the neutrino mass. The Dy* states decay by X-ray and Auger electron emissions. The total decay energy is measured in a bolometer. These excitations have been studied by Robertson and by Faessler et al.. In addition the daughter atom Dy can also be excited by moving in the capture process one electron into the continuum. The escape of these continuum electrons is automatically included in the experimental bolometer spectrum. Recently a method developed by Intemann and Pollock was used by DeRujula and Lusignoli for a rough estimate of this shake-off process for "s" wave electrons in capture on 163Ho. The purpose of the present work is to give a more reliable description of "s" wave shake-off in electron capture on Holmium. For that one needs very accurate atomic wave functions of Ho in its ground state and excited atomic wave functions of Dy* including a description of the continuum electrons. In the present approach the wave functions of Ho and Dy* are determined selfconsistently with the antisymmetrized relativistic Dirac-Hartree-Fock approach. The relativistic continuum electron wave functions for the ionized Dy* are obtained in the corresponding selfconsistent Dirac-Hartree-Fock-Potential. In this improved approach shake-off can hardly be seen after electron capture in 163Ho and thus can probably not affect the determination of the electron neutrino mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call