Abstract

Models with spontaneously broken global lepton number can lead to a pseudo-Goldstone boson as a long-lived dark matter candidate. Here we revisit the case of singlet majoron dark matter and discuss multiple constraints. For masses above MeV, this model could lead to a detectable flux of monochromatic mass-eigenstate neutrinos, which have flavor ratios that depend strongly on the neutrino mass hierarchy. We provide a convenient parametrization for the loop-induced majoron couplings to charged fermions that allows us to discuss three-generation effects such as lepton flavor violation. These couplings are independent of the low-energy neutrino parameters but can be constrained by the majoron decays into charged fermions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call