Abstract

At extreme energies, both low and high, the spacetime symmetries of relativistic quantum field theories (QFTs) are expected to change with Galilean symmetries emerging in the very low energy domain and, as we will argue, Carrollian symmetries appearing at very high energies. The formulation of Wilsonian renormalisation group seems inadequate for handling these changes of the underlying Poincare symmetry of QFTs and it seems unlikely that these drastic changes can be seen within the realms of relativistic QFT. We show that contrary to this expectation, changes in the spacetime algebra occurs at the very edges of parameter space. In particular, we focus on the very high energy sector and show how bilinears of U(1) currents added to a two dimensional (massless) scalar field theory deform the relativistic spacetime conformal algebra to conformal Carroll as the effective coupling of the deformation is dialed to infinity. We demonstrate this using both a symmetric and an antisymmetric current-current deformation for theories with multiple scalar fields. These two operators generate distinct kinds of quantum flows in the coupling space, the symmetric driven by Bogoliubov transformations and the antisymmetric by spectral flows, both leading to Carrollian CFTs at the end of the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.