Abstract

We study the system of massive and mixed neutrinos interacting with background matter moving with an acceleration. We start with the derivation of the Dirac equation for a single neutrino in the noninertial frame where matter is at rest. A particular case of matter rotating with a constant angular velocity is considered. The Dirac equation is solved and the neutrino energy levels are found for ultrarelativistic particles propagating in rotating matter. Then we generalize our results to include several neutrino generations and consider mixing between them. Using the relativistic quantum mechanics approach we derive the effective Schr\"{o}dinger equation for the description of neutrino flavor oscillations in rotating matter. We obtain the resonance condition for neutrino oscillations and examine how it can be affected by the matter rotation. We also compare our results with the findings of other authors who studied analogous problem previously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.