Abstract

In two-flavor dense quark matter, we describe the dynamics in the single plane wave Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state satisfying the color and electric neutrality conditions. We find that because the neutral LOFF state itself suffers from a chromomagnetic instability in the whole region where it coexists with the (gapped or gapless) two-flavor superconducting phases, it cannot cure this instability in those phases. This is unlike the recently revealed gluonic phase which seems to be able to resolve this problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call