Abstract
A total of 8 sounding rocket flights with measurements of neutral air turbulence in the upper mesosphere have been performed in the past 10 years with simultaneous and nearly co‐located radar measurements of polar mesosphere summer echoes (PMSE). These measurements took place close to the rocket ranges in northern Norway (Andøya Rocket Range, 69°N) and in northern Sweden (Esrange, 68°N). A detailed comparison demonstrates that there is no apparent correlation between PMSE and neutral air turbulence and that in fact turbulence is absent in the majority of all PMSE events (no turbulence in 7 out of 10 PMSE layers). This suggests that neutral turbulence and other mechanisms affecting the neutral atmosphere at very small spatial scales play a minor role in creating PMSE, contrary to the speculations published in the literature. The main mechanism for creating PMSE remains unidentified. A comparison of PMSE with simultaneous temperature profiles derived from falling sphere and ionization gauge measurements shows that PMSE are practically always present at altitudes where the temperature is low enough for water ice particles to exist. This supports the general understanding that PMSE are closely related to charged water ice particles. On the other hand, the measurements also demonstrate that low enough temperatures are not sufficient for PMSE to exist. Temperature lapse rates were deduced from the high‐altitude‐resolution ionization gauge measurements. Within the PMSE layers the temperature lapse rate is typically +1–2 K/km with a rather large variability of ±5–10 K/km. Adiabatic lapse rates have never been found within a PMSE layer, which suggests that turbulence cannot have been active for a substantial period. This again supports the idea that neutral air turbulence plays a minor role in creating PMSE. Probably the only common physical reason for PMSE and turbulence is the background temperature profile, which supports the creation of ice particles (since temperatures are very low) and which provokes the breaking of gravity waves and creation of turbulence since the temperature gradient changes at the mesopause.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.