Abstract

Brain-like neuromorphic computing networks based on the human brain information processing model are gradually breaking down the memory barriers caused by traditional computing frameworks. The brain-like neural system consists of electronic synapses and neurons. The multiple ferroelectric polarization switching modulated by the external electric field is well suited to simulate artificial neural synaptic weights. Therefore, ferroelectric diodes' (FDs) synapses have great advantages in building highly reliable and energy-efficient artificial neural networks. In this paper, we demonstrate the FDs synapse, which is based on rare-earth metal-doped BaTiO3 ferroelectric dielectric layer materials. This performs short-term and long-term synaptic plasticity behaviors by modulating synaptic weights using pulsed stimuli to polarize or flip ferroelectric films. In addition, convolutional neural networks were constructed on the MNIST dataset and the Fashion-MNIST dataset to check the feasibility of the device in simulating bio-visual recognition. The results expand the application of FDs' devices in the intersection of artificial intelligence and bioscience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call