Abstract

Intracerebral hemorrhage (ICH) refers to severe stroke subtype that may be life-threatening or even cause death. It is clinically observed that coronavirus disease 2019 (COVID-19) may be associated with the high mortality in ICH patients. Ferulic acid, one of the functional bioactive ingredients from medicinal herbs, has been preclinically proven with beneficial activities, including neuroprotection and anti-inflammation actions. Based on current findings, we assumed that ferulic acid may play the potentials against COVID-19 when ICH. In this study, preclinical approach including network pharmacology and molecular docking was applied to detect and identify the core targets and pharmacological mechanisms involved in ferulic acid on COVID-19 and ICH. The network pharmacology analysis identified total eleven core targets in ferulic acid and COVID-19/ICH. The molecular mechanisms of ferulic acid against COVID-19 and ICH were mostly involved in induction of antiviral activity, modulation of inflammatory reaction. Molecular docking model revealed that ferulic acid might effectively bind to epidermal growth factor receptor (EGFR) protein based on strong binding capability. Current findings reflected the preclinical pharmacological activities of ferulic acid that might use for management of COVID-19 and ICH. Although there are the limitations that are absence of experimental validation, these bioinformatic results underline that ferulic acid may exert simultaneous potentials against COVID-19 and ICH through modulating integrative mechanisms and key biotargets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call