Abstract

Acupuncture stimulations at GB34 and LR3 inhibit the reduction of tyrosine hydroxylase in the nigrostriatal dopaminergic neurons in the parkinsonism animal models. Especially, behavioral tests showed that acupuncture stimulations improved the motor dysfunction in a previous study by almost 87.7%. The thalamus is a crucial area for the motor circuit and has been identified as one of the most markedly damaged areas in Parkinson's disease (PD), so acupuncture stimulations might also have an effect on the thalamic damage. In this study, gene expression changes following acupuncture at the acupoints were investigated in the thalamus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism model using a whole transcript array. It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase in the thalamic regions of the MPTP model, while acupuncture at the non-acupoints could not suppress this decrease by its level shown in the acupoints. GeneChip gene array analysis showed that 18 (5 annotated genes: Dnase1l2, Dusp4, Mafg, Ndph and Pgm5) of the probes down-regulated in MPTP, as compared to the control, were exclusively up-regulated by acupuncture at the acupoints, but not at the non-acupoints. In addition, 14 (3 annotated genes; Serinc2, Sp2 and Ucp2) of the probes up-regulated in MPTP, as compared to the control, were exclusively down-regulated by acupuncture at the acupoints, but not at the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These results suggest that the 32 probes (8 annotated genes) which are affected by MPTP and acupuncture may be responsible for exerting the inhibitory effect of acupuncture in the thalamus which can be damaged by MPTP intoxication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.