Abstract

Critical and major operations are often accompanied by brain ischemic complications. Previous studies found that propofol post-conditioning provided neuroprotective functions through upregulating the expression of potassium chloride cotransporter 2 (KCC2) in gamma-aminobutyric acid (GABA) interneurons. Membrane expression and phosphorylation represents KCC2 activity, which were modulated by a protein kinase C (PKC)-dependent mechanism. However, the role of propofol in increasing KCC2 phosphorylation and the involvement of protein kinase Mζ (PKMζ), a major subtype of PKC, in the KCC2 pathway remained unclear. In this study, we established middle cerebral artery occlusion model in rats to evaluate the long-term recovery of brain functions using behavioral experiments. KCC2 and PKMζ were assessed via western blot. We used the selective inhibitor, zeta inhibitory peptide (ZIP), to investigate the relationship between KCC2 and PKMζ. Intracellular chloride concentration in the hippocampal CA1 area was measured to determine KCC2 activity. We found that propofol, infused at a speed of 20mgkg-1h-1 for 2h at the onset of reperfusion, improved neurological deficits and cognitive dysfunction following ischemia/reperfusion injury. PKMζ expression was significantly upregulated, which improved KCC2 membrane expression and phosphorylation in the ischemic hippocampal CA1 area, and these effects could last up to 28days. But ZIP inhibited this process. Ultimately, we showed that propofol increased KCC2 phosphorylation and PKMζ was the upstream of KCC2. Propofol led to long-term recovery of brain functions by upregulating the activity of the PKMζ/KCC2 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.