Abstract
Ubiquitous finger motion tracking enables a number of exciting applications in augmented reality, sports analytics, rehabilitation-healthcare, haptics etc. This paper presents NeuroPose, a system that shows the feasibility of 3D finger motion tracking using a platform of wearable ElectroMyoGraphy (EMG) sensors. EMG sensors can sense electrical potential from muscles due to finger activation, thus offering rich information for fine-grained finger motion sensing. However converting the sensor information to 3D finger poses is non trivial since signals from multiple fingers superimpose at the sensor in complex patterns. Towards solving this problem, NeuroPose fuses information from anatomical constraints of finger motion with machine learning architectures on Recurrent Neural Networks (RNN), Encoder-Decoder Networks, and ResNets to extract 3D finger motion from noisy EMG data. The generated motion pattern is temporally smooth as well as anatomically consistent. Furthermore, a transfer learning algorithm is leveraged to adapt a pretrained model on one user to a new user with minimal training overhead. A systematic study with 12 users demonstrates a median error of 6.24° and a 90%-ile error of 18.33° in tracking 3D finger joint angles. The accuracy is robust to natural variation in sensor mounting positions as well as changes in wrist positions of the user. NeuroPose is implemented on a smartphone with a processing latency of 0.101s, and a low energy overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.