Abstract
Social insects offer powerful models to investigate the mechanistic foundation of elaborate individual behaviors comprising a cooperative community. Workers of the leafcutter ant genus Atta provide an extreme example of behavioral segregation among many phenotypically distinct worker types. We utilize the complex worker system of Atta cephalotes to test the molecular underpinnings of behavioral programming and, in particular, the extent of plasticity to reprogramming. We identify specific neuropeptides as mediators of worker division of labor in A. cephalotes , finding two neuropeptides associated with characteristic behaviors of leafcutting and of brood care. Manipulation via genetic knockdown or by injection of these neuropeptides led to stark loss or gain of each behavior and to transcriptomic shifts in the predicted direction, that is, towards gene pathways expressed in the natural caste. We also compare specific A. cephalotes worker transcriptomes with those of orthologous workers of the eusocial mammal, the naked mole rat H. gaber , revealing global similarities between caste-biased expression and link to specific roles of our studied neuropeptides in ants. This work underscores the essential function of neuropeptides in establishing complex social behavior and a remarkable plasticity among individual behavioral types.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have