Abstract
Immunohistochemistry was used to analyse 18- and 26-month-old transgenic mice overexpressing the human β-amyloid precursor protein under the platelet-derived growth factor-β promoter with regard to presence and distribution of neuropeptides. In addition, antisera/antibodies to tyrosine hydroxylase, acetylcholinesterase, amyloid peptide, glial fibrillary acidic protein and microglial marker OX42 were used. These mice have been reported to exhibit extensive amyloid plaques in the hippocampus and cortex [Masliah et al. (1996) J. Neurosci.16, 5795–5811].The most pronounced changes were related to neuropeptides, whereas differences between wild-type and transgenic mice were less prominent with regard to tyrosine hydroxylase and acetylcholinesterase. The main findings were of two types; (i) involvement of peptide-containing neurites in amyloid β-peptide positive plaques, and (ii) more generalized changes in peptide levels in specific layers, neuron populations and/or subregions in the hippocampal formation and ventral cortices. In contrast, the parietal and auditory cortices were comparatively less affected. The peptide immunoreactivities most strongly involved, both in plaques and in the generalized changes, were galanin, neuropeptide Y, cholecystokinin and enkephalin.This study shows that there is considerable variation both with regard to plaque load and peptide expression even among homozygotes of the same age. The most pronounced changes, predominantly increased peptide levels, were observed in two 26-month-old homozygous mice, for example, galanin-, enkephalin- and cholecystokinin-like immunoreactivities in stratum lacunosum moleculare, and galanin, neuropeptide Y, enkephalin and dynorphin in mossy fibers. Many peptides also showed elevated levels in the ventral cortices. However, decreases were also observed. Thus, galanin-like immunoreactivity could not any longer be detected in the diffusely distributed (presumably noradrenergic) fiber network in all hippocampal and cortical layers, and dynorphin-like immunoreactivity was decreased in stratum moleculare, cholecystokinin-like immunoreactivity in mossy fibers and substance P-like immunoreactivity in fibers around granule cells.The significance of generalized peptide changes is at present unclear. For example, the increase in the mainly inhibitory peptides galanin, neuropeptide Y, enkephalin and dynorphin and the decrease in the mainly excitatory peptide cholecystokinin in mossy fibers (and of substance P fibers around granule cells) indicate a shift in balance towards inhibition of the input to the CA3 pyramidal cell layer. Moreover, it may be speculated that the increase in levels of some of the peptides represents a reaction to nerve injury with the aim to counteract, in different ways, the consequences of injury, for example by exerting trophic actions. Further studies will be needed to establish to what extent these changes are typical for Alzheimer mouse models in general or are associated with the V717F mutation and/or the platelet-derived growth factor-β promoter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have