Abstract

Fetal growth restriction (FGR) and prematurity are associated with high risk of brain injury and long-term neurological deficits. FGR infants born preterm are commonly exposed to mechanical ventilation, but it is not known whether ventilation differentially induces brain pathology in FGR infants compared with appropriate for gestational age (AGA) infants. We investigated markers of neuropathology in moderate- to late-preterm FGR lambs, compared with AGA lambs, delivered by caesarean birth and ventilated under standard neonatal conditions for 24 h. FGR was induced by single umbilical artery ligation in fetal sheep at 88-day gestation (term, 150 days). At 125-day gestation, FGR and AGA lambs were delivered, dried, intubated, and commenced on noninjurious ventilation, with surfactant administration at 10 min. A group of unventilated FGR and AGA lambs at the same gestation was also examined. Over 24 h, circulating pH, Po2, and lactate levels were similar between groups. Ventilated FGR lambs had lower cerebral blood flow compared with AGA lambs ( P = 0.01). The brain of ventilated FGR lambs showed neuropathology compared with unventilated FGR, and unventilated and ventilated AGA lambs, with increased apoptosis (caspase-3), blood-brain barrier dysfunction (albumin extravasation), activated microglia (Iba-1), and increased expression of cellular oxidative stress (4-hydroxynonenal). The neuropathologies seen in the ventilated FGR brain were most pronounced in the periventricular and subcortical white matter but also evident in the subventricular zone, cortical gray matter, and hippocampus. Ventilation of preterm FGR lambs increased brain injury compared with AGA preterm lambs and unventilated FGR lambs, mediated via increased vascular permeability, neuroinflammation and oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call