Abstract

Oxidative stress arising from suboptimal placental function contributes to a multitude of pathologies in infants compromised by fetal growth restriction (FGR). FGR infants are at high risk for respiratory dysfunction after birth and poor long-term lung function. Our objective was to investigate the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. Placental insufficiency and FGR was surgically induced in 13 fetal sheep at ∼105 days of gestation by ligation of a single umbilical artery. Maternal intravenous melatonin infusion was commenced in seven of the ewes 4 h after surgery and continued until birth. Lambs delivered normally at term and lungs were collected 24 h after birth for histological assessment of lung structure and injury and compared with appropriately grown control lambs (n = 8). FGR fetuses were hypoxic and had lower glucose during gestation compared with controls. Melatonin administration prevented chronic hypoxia. Within the lung, FGR caused reduced secondary septal crest density and altered elastin deposition compared with controls. Melatonin administration had no effect on the changes to lung structure induced by FGR. We conclude that chronic FGR disrupts septation of the developing alveoli, which is not altered by melatonin administration. These findings suggest that oxidative stress is not the mechanism driving altered lung structure in FGR neonates. Melatonin administration did not prevent disrupted airway development but also had no apparent adverse effects on fetal lung development.NEW & NOTEWORTHY Fetal growth restriction (FGR) results in poor respiratory outcomes, which may be caused by oxidation in utero. We investigated the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. FGR disrupted septation of the developing alveoli, which is not altered by melatonin administration. Oxidative stress may not be the mechanism driving altered lung structure in FGR neonates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.