Abstract

Emerging two-terminal nanoscale memory devices, known as memristors, have demonstrated great potential for implementing energy-efficient neuro-inspired computing architectures over the past decade. As a result, a wide range of technologies have been developed that, in turn, are described via distinct empirical models. This diversity of technologies requires the establishment of versatile tools that can enable designers to translate memristors’ attributes in novel neuro-inspired topologies. In this study, we present NeuroPack, a modular, algorithm-level Python-based simulation platform that can support studies of memristor neuro-inspired architectures for performing online learning or offline classification. The NeuroPack environment is designed with versatility being central, allowing the user to choose from a variety of neuron models, learning rules, and memristor models. Its hierarchical structure empowers NeuroPack to predict any memristor state changes and the corresponding neural network behavior across a variety of design decisions and user parameter options. The use of NeuroPack is demonstrated herein via an application example of performing handwritten digit classification with the MNIST dataset and an existing empirical model for metal-oxide memristors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.