Abstract

Memristors have shown promising features for enhancing neuromorphic computing concepts and AI hardware accelerators. In this paper, we present a user-friendly software infrastructure that allows emulating a wide range of neuromorphic architectures with memristor models. This tool empowers studies that exploit memristors for online learning and online classification tasks, predicting memristor resistive state changes during the training process. The versatility of the tool is showcased through the capability for users to customise parameters in the employed memristor and neuronal models as well as the employed learning rules. This further allows users to validate concepts and their sensitivity across a wide range of parameters. We demonstrate the use of the tool via an MNIST classification task. Finally, we show how this tool can also be used to emulate the concepts under study in-silico with practical memristive devices via appropriate interfacing with commercially available characterisation tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.