Abstract

Background ContextThe most common causes of spinal cord injury (SCI) are traumatic traffic accidents, falls, and violence. Spinal cord injury greatly affects a patient's mental and physical conditions and causes substantial economic impact to society. There are many methods, such as high doses of corticosteroids, surgical stabilization, decompression, and stem cell transplantation, for functional recovery after SCI, but the effect is still not satisfactory. PurposeThis study investigated the role of neuronal regeneration and the location of the neuronal regeneration after SCI in rats. Study DesignThis is an experimental animal study of acute spinal cord injury investigating the neuronal regeneration after SCI. Double immunofluorescence staining of NF-200 and BrdU was performed to detect the location of the neuronal regeneration. MethodsForty-five adult Wistar rats were tested. Allen hit model (10 g) induced acute SCI sites targeted at the T10 segments. Nestin expression was detected via immunohistochemistry. Double immunofluorescence staining of neurofilament 200 (NF-200) and 5-bromo-2′-deoxyuridine (BrdU) was performed 10 mm away from the spinal cord center. Neural functional recovery was determined using the Basso, Beattie, and Bresnahan (BBB) score and electro-physiological examination. The study was funded by the Natural Science Foundation of China (NSFC, 81272172). The funder of this study had no capacity to influence the scholarly conduct of the research, interpretation of results, or dissemination of study outcomes. ResultsBrdU- and NF-200-positive cells were rarely detected and absent at 3 weeks and 4 weeks, respectively. We also detected the BrdU and NF-200 co-expressed cells are at 3 to 5 mm away from the injured site, and no co-expressed cells were detected at the injured site in this SCI model. The BBB score and electro-physiological examination of the nervous system were significantly different at 4 weeks. ConclusionsTo our knowledge, this is the first study to demonstrate that neurons are regenerated 3 to 5 mm away from the injured site, and no neurons are regenerated at the injured site in this SCI model, which suggests a novel train of thought on SCI treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call