Abstract

Regeneration and compensatory sprouting are limited after lesions in the mature mammalian central nervous system in contrast to the developing central nervous system (CNS). After neutralization of the growth inhibitor Nogo-A, however, massive sprouting and rearrangements of fiber connections occurred after unilateral pyramidal tract lesions in adult rats: Corticofugal fibers from the lesioned side crossed the midline of the brainstem and innervated the contralateral basilar pontine nuclei. To determine whether these newly sprouted fibers formed synaptic contacts, we analyzed the corticofugal fibers in the basilar pontine nuclei contralateral to the lesion by light and electron microscopy 2 weeks after pyramidotomy and treatment with the Nogo-A-inhibiting monoclonal antibody IN-1 (mAb IN-1). The mAb IN-1, but not a control antibody, led to structural changes in the basilar pons ipsilateral and contralateral to the lesion site. Fibers sprouted across the pontine midline and terminated topographically. They established asymmetric synaptic contacts with the characteristics of normal corticopontine terminals. These results show that adult CNS fibers are able to sprout and to form new synaptic contacts after a lesion when a growth-permissive microenvironment is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call