Abstract

The cerebellum is a major site of endocannabinoid (eCB) production and signaling. The predominant eCB within the cerebellum, 2-arachidonoylglycerol (2-AG), is produced by a metabotropic glutamate receptor type 1 (mGluR1)-initiated signaling cascade within Purkinje neurons (PNs). 2-AG retrogradely stimulates cannabinoid 1 receptors (CB1Rs) located on presynaptic terminals. The activated CB1R decreases neurotransmitter release and leads to the production of nitric oxide (NO), a gaseous molecule. Recently, our group discovered that during development in mice lacking neuronal nitric oxide synthase (nNOS-/-), PNs display an excitotoxic phenotype associated with overactivated mGluR1. Considering the importance of mGluR1 in 2-AG synthesis, the present study explored the role of nNOS-derived NO in regulating the eCB pathway within the cerebella of wildtype (WT) and nNOS-/- mice at postnatal day 7 (PD7), 2weeks (2W), and 7weeks (7W). Our analysis showed that diacylglycerol lipase α, the enzyme that catalyzes 2-AG production, was elevated at early postnatal ages, and followed by elevated levels of 2-AG in nNOS-/- cerebella compared to WT. CB1R expression in nNOS-/- cerebella was upregulated at PD7 but decreased at 2W and 7W when compared to age-matched WT mice cerebella. Importantly, treating organotypic nNOS-/- cerebellar slice cultures with an NO-donor-attenuated CB1R levels after 7days in vitro. In addition, expression of the eCB hydrolases fatty acid amide hydrolase and monoacylglycerol lipase were significantly downregulated in nNOS-/- cerebella compared to WT cerebella at 7W. Together, these results reveal a novel role for nNOS/NO in regulating eCB signaling in the cerebellum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.