Abstract

To better characterize neurophysiologic processes underlying olfactory dysfunction in schizophrenia, nose-referenced 30-channel electroencephalogram was recorded from 32 patients and 35 healthy adults (18 and 18 male) during detection of hydrogen sulfide (constant-flow olfactometer, 200 ms unirhinal exposure). Event-related potentials (ERPs) were transformed to reference-free current source density (CSD) waveforms and analyzed by unrestricted Varimax-PCA. Participants indicated when they perceived a high (10 ppm) or low (50% dilution) odor concentration. Patients and controls did not differ in detection of high (23% misses) and low (43%) intensities and also had similar olfactory ERP waveforms. CSDs showed a greater bilateral frontotemporal N1 sink (305 ms) and mid-parietal P2 source (630 ms) for high than low intensities. N1 sink and P2 source were markedly reduced in patients for high intensity stimuli, providing further neurophysiological evidence of olfactory dysfunction in schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.