Abstract

We investigated the distribution of neuronal damage following brief cerebral transient ischemia and repeated ischemia at 1-h intervals in the gerbil, using light microscopy and 45Ca autoradiography as a marker for detection of ischemic damage. The animals were allowed to survive for 7 days after ischemia induced by bilateral carotid artery occlusion. Following 2-min ischemia, neuronal damage determined by abnormal calcium accumulation was not observed in the forebrain regions. Following 3-min ischemia, however, abnormal calcium accumulation was recognized only in the hippocampal CA1 sector and part of the striatum. Two 2-min ischemic insults caused extensive abnormal calcium accumulation in the dorsolateral part of striatum, the hippocampal CA1 sector, the thalamus, the substantia nigra and the inferior colliculus. The ischemic insults were more severe than that of a single 3-min ischemia. However, three 1-min ischemic insults caused abnormal calcium accumulation only in the striatum. On the other hand, three 2-min ischemic insults caused abnormal calcium accumulation in the brain. The abnormal calcium accumulation was found in the dorsolateral part of striatum, the hippocampal CA1 sector, the thalamus, the medial geniculate body, the substantia nigra and the inferior colliculus. Gerbils subjected to three 3-min ischemic insults revealed most severe abnormal calcium accumulation. Marked calcium accumulation was seen not only in the above sites, but also spread in the neocortex, the septum and the hippocampal CA3 sector. Morphological study after transient or repeated ischemia indicated that the distribution and frequency of the neuronal damage was found in the sites corresponding to most of the regions of abnormal calcium accumulation. The abnormal calcium accumulation, however, was not always found in the regions such as the neocortex and the hippocampal CA3 sector where the neuronal damage was seen. The present study demonstrates that repeated ischemic insults at 1-h intervals can produce severe neuronal damage not only in the basal ganglia and the limbic system but also in the brainstem. Furthermore, they suggest that the cumulative effects after repeated ischemic insults are related to the time of ischemia or the number of episodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.