Abstract

This work tested the theory that neuronal calcium sensor-1 (NCS-1) has effects on neurotransmitter release beyond its actions on membrane channels. We used nerve-ending preparations where membrane channels are bypassed through membrane permeabilization made by mechanical disruption or streptolysin-O. Nerve ending NCS-1 and phosphatidylinositol 4-kinase (PI4K) are largely or entirely particulate, so their concentrations in nerve endings remain constant after breaching the membrane. Exogenous, myristoylated NCS-1 stimulated nerve ending phosphatidylinositol 4-phosphate [PI(4)P] synthesis, but non-myristoylated-NCS-1 did not. The N-terminal peptide of NCS-1 interfered with PI(4)P synthesis, and with spontaneous and Ca(2+)-evoked release of both [(3)H]-norepinephrine (NA) and [(14)C]-glutamate (glu) in a concentration-dependent manner. An antibody raised against the N-terminal of NCS-1 inhibited perforated nerve ending PI(4)P synthesis, but the C-terminal antibody had no effects. Antibodies against the N- and C-termini of NCS-1 caused significant increases in mini/spontaneous/stimulation-independent release of [(3)H]-NA from perforated nerve endings, but had no effect on [(14)C]-glu release. These results support the idea that NCS-1 facilitates nerve ending neurotransmitter release and phosphoinositide production via PI4K and localizes these effects to the N-terminal of NCS-1. Combined with previous work on the regulation of channels by NCS-1, the data are consistent with the hypothesis that a NCS-1-PI4K (NP, neuropotentiator) complex may serve as an essential linker between lipid and protein metabolism to regulate membrane traffic and co-ordinate it with ion fluxes and plasticity in the nerve ending.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.