Abstract
Networks of stochastic leaky integrate-and-fire neurons, both at the mean-field level and in square lattices, present a continuous absorbing phase transition with power-law neuronal avalanches at the critical point. Here we complement these results showing that small-world Watts-Strogatz networks have mean-field critical exponents for any rewiring probability p>0. For the ring (p=0), the exponents are the same from the dimension d=1 of the directed-percolation class. In the model, firings are stochastic and occur in discrete time steps, based on a sigmoidal firing probability function. Each neuron has a membrane potential that integrates the signals received from its neighbors. The membrane potentials are subject to a leakage parameter. We study topologies with a varied number of neuron connections and different values of the leakage parameter. Results indicate that the dynamic range is larger for p=0. We also study a homeostatic synaptic depression mechanism to self-organize the network towards the critical region. These stochastic oscillations are characteristic of the so-called self-organized quasicriticality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have