Abstract

The amyloid-beta peptide (Abeta) deposited in plaques in Alzheimer's disease has been shown to cause degeneration of neurons in experimental paradigms in vivo and in vitro. However, it has been difficult to convincingly demonstrate toxicity of native amyloid deposits in the aged and Alzheimer brains. Here we provide evidence that the fibrillar conformation of Abeta (fAbeta) deposited in compact plaques is associated with the pathologies observed in Alzheimer brains. fAbeta containing compact but not diffuse plaques in the aged rhesus cortex contained activated microglia and clusters of phosphorylated tau-positive swollen neurites. Scholl's quantitative analysis revealed that the area adjacent to fAbeta, containing compact but not diffuse plaques in aged rhesus, aged human, and Alzheimer's disease cortex, displays significant loss of neurons and small but statistically significant reduction in the density of cholinergic axons. These observations suggest that fAbeta toxicity may not be restricted to cultured cells and animal injection models. Rather, fAbeta deposited in native compact plaques in aged and AD brains may exert selective toxic effects on its surrounding neural environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call