Abstract

Interactions between living organisms and the environment are commonly regulated by accurate and timely processing of sensory signals. Hence, behavioral response engagement by an organism is typically constrained by the arrival time of sensory information to the brain. While psychophysical response latencies to acoustic information have been investigated, little is known about how variations in neuronal response time relate to sensory signal characteristics. Consequently, the primary objective of the present investigation was to determine the pattern of neuronal activation induced by simple (pure tones), complex (noise bursts and frequency modulated sweeps), and natural (conspecific vocalizations) acoustic signals of different durations in cat auditory cortex. Our analysis revealed three major cortical response characteristics. First, latency measures systematically increase in an antero-dorsal to postero-ventral direction among regions of auditory cortex. Second, complex acoustic stimuli reliably provoke faster neuronal response engagement than simple stimuli. Third, variations in neuronal response time induced by changes in stimulus duration are dependent on acoustic spectral features. Collectively, these results demonstrate that acoustic signals, regardless of complexity, induce a directional pattern of activation in auditory cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.