Abstract

There is growing evidence that defective DNA repair in neurons with accumulation of DNA lesions and loss of genome integrity underlies aging and many neurodegenerative disorders. An important challenge is to understand how neurons can tolerate the accumulation of persistent DNA lesions without triggering the apoptotic pathway. Here we study the impact of the accumulation of unrepaired DNA on the chromatin architecture, kinetics of the DNA damage response and transcriptional activity in rat sensory ganglion neurons exposed to 1-to-3 doses of ionizing radiation (IR). In particular, we have characterized the structural, molecular and transcriptional compartmentalization of unrepaired DNA in persistent DNA damaged foci (PDDF). IR induced the formation of numerous transient foci, which repaired DNA within the 24 h post-IR, and a 1-to-3 PDDF. The latter concentrate DNA damage signaling and repair factors, including γH2AX, pATM, WRAP53 and 53BP1. The number and size of PDDF was dependent on the doses of IR administered. The proportion of neurons carrying PDDF decreased over time of post-IR, indicating that a slow DNA repair occurs in some foci. The fine structure of PDDF consisted of a loose network of unfolded 30 nm chromatin fiber intermediates, which may provide a structural scaffold accessible for DNA repair factors. Furthermore, the transcription assay demonstrated that PDDF are transcriptionally silent, although transcription occurred in flanking euchromatin. Therefore, the expression of γH2AX can be used as a reliable marker of gene silencing in DNA damaged neurons. Moreover, PDDF were located in repressive nuclear environments, preferentially in the perinucleolar domain where they were frequently associated with Cajal bodies or heterochromatin clumps forming a structural triad. We propose that the sequestration of unrepaired DNA in discrete PDDF and the transcriptional silencing can be essential to preserve genome stability and prevent the synthesis of aberrant mRNA and protein products encoded by damaged genes.

Highlights

  • Cellular DNA damage response (DDR) is a molecular signaling pathway that is strongly induced by cytotoxic DNA lesions, such as double strand breaks (DSBs) which are produced by endogenous or exogenous genotoxic agents

  • Organization and dynamics of persistent DNA damaged foci (PDDF) induced by ionizing radiation (IR) in SGNs The organization and dynamics of PDDF were analyzed in mechanically dissociated perikarya of SGNs exposed to one (4Gy), two (4Gy x 2) or three (4Gy x 3) doses of IR and double immunolabeled for phosphorylated histone H2AX, a well-established marker of DSBs [17, 18], and 53BP1, a key factor that protects DNA ends from resection and promotes DNA repair by the non-homologous end joining (NHEJ) [19, 20]

  • This observation clearly indicates that the neuronal accumulation of unrepaired DNA in PDDF is dependent on the total dose of IR

Read more

Summary

Introduction

Cellular DNA damage response (DDR) is a molecular signaling pathway that is strongly induced by cytotoxic DNA lesions, such as double strand breaks (DSBs) which are produced by endogenous or exogenous genotoxic agents. DSBs can produce energy starvation given that the DDR is a very high ATP consuming process [6]. Since post-mitotic neurons lack sister chromatids that serve as a template to ensure “error-free” repair by homologous recombination (HR), DSBs need to be repaired by non-homologous end joining (NHEJ) [7]. Due to the fact that DSB ends need to be processed before religation, errors can be introduced in NHEJ repair, resulting in neuronal dysfunction which contribute to neurodegeneration [8]. It has recently been reported that accumulated DNA damage can produce a deregulated DDR, leading to a senescence-like phenotype in neurons [9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.