Abstract

The assessment of the suitability of a wind system depends largely on the prediction of the wind potential. Indeed, the variability and uncertainty inherent in renewable energy sources can have a significant impact on accurate and reliable prediction of the power produced. Wind sources are needed at different time stages and at different altitudes. Thus, putting in place tools for predicting these wind resources is essential for their effective integration in the frame of electricity generation. In this context, the paper of this study is to propose a short-term wind energy prediction method through the formation of historical wind velocity data based on neural networks. This assessment involves modelling wind speed using ANN through the feed-forwad network. So, ANN are at the basis of adaptive identification methods and intelligent command laws. In this sense, first, the process of forecasting wind energy involves the creation of a raw data base, which is then filtered by probabilistic neural network. More concretely, the contribution of the work can be given in the form of technical results. These results start with a proposal of the theoretical models, then it is given the approach method that is used, then it is proposed the design of the system and the whole is closed by a performance evaluation. As far as performance evaluation is concerned, it is presented in the form of the results of analysed simulations of the forecast model. In practical terms, it should be noted that the proposed model also provides a high degree of accuracy for the measured data. In the end, normalized average absolute errors were recorded between 4.7% and 4.9%. As, it was found a regression factor R (measures the correlation between output-Target) between 91% and 96% for the site of the northern Mauritanian coast. This is largely acceptable for similar calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.