Abstract
In this paper, we propose a normalized semi-supervised probabilistic expectation-maximization neural network (PEMNN) that minimizes Bayesian misclassification cost risk. Using simulated and real-world datasets, we compare the proposed PEMNN with supervised cost sensitive probabilistic neural network (PNN), discriminant analysis (DA), mathematical integer programming (MIP) model and support vector machines (SVM) for different misclassification cost asymmetries and class biases. The results of our experiments indicate that the PEMNN performs better when class data distributions are normal or uniform. However, when class data distribution is exponential the performance of PEMNN deteriorates giving slight advantage to competing MIP, DA, PNN and SVM techniques. For real-world data with non-parametric distributions and mixed decision-making attributes (continuous and categorical), the PEMNN outperforms the PNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.