Abstract

Background: Burned patients are usually resistant to the neuromuscular effects of nondepolarizing relaxants, mostly because of receptor changes. The magnitude of the resistance is related to burn size and time after burn. Mivacurium is a muscle relaxant, degraded by plasma cholinesterase, whose enzyme activity is decreased in burns. The present study tested the hypothesis that burn-induced depressed plasma cholinesterase activity counteracts the receptor-mediated resistance, resulting in a lack of resistance to mivacurium. Methods: Burned patients (n = 23), aged 2-12 yr, subclassified into burns of 10-30% or > 30% of body surface, were studied at ≤ 6 days and again at 1-12 weeks after burn if possible. Thirteen additional patients served as controls. Neuromuscular variables monitored included onset and recovery following bolus dose, continuous infusion rates required to maintain 95 ± 4% paralysis, and recovery rates following infusion. Results: The onset times of maximal twitch suppression were not different between burns and controls, but recovery to 25% of baseline twitch height was prolonged in patients with > 30% burn irrespective of time after injury. The continuous infusion rates to maintain twitch suppression at 95 ± 4% were not different between groups. The recovery indices, including train-of-four to > 75%, 25-75%, or 5-95% in burned patients, were similar or prolonged compared with controls. The prolonged recovery in burned patients was inversely related to plasma cholinesterase activity (R 2 = 0.86, r = - 0.93, P < 0.001), and the decreased plasma cholinesterase activity was related to burn size and time after burn. Conclusions: A normal mivacurium dosage (0.2 mg/kg) effects good relaxation conditions in burned patients, with an onset time similar to that in controls. This finding contrasts with the response seen with other nondepolarizing drugs, higher doses of which are required to effect paralysis. The decreased metabolism of mivacurium, resulting from depressed plasma cholinesterase activity, probably counteracts the receptor-mediated potential for resistance. Because succinylcholine is contraindicated in burned patients, larger doses of nondepolarizing agents are advocated to effect rapid onset of paralysis. This generalization does not hold for mivacurium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.