Abstract
BackgroundFollowing an amputation, the human postural control system develops neuromuscular adaptations to regain an effective postural control. We investigated the compensatory mechanisms behind these adaptations and how sensorimotor integration is affected after a lower-limb transfemoral amputation.MethodsCenter of pressure (CoP) data of 12 unilateral transfemoral amputees and 12 age-matched able-bodied subjects were recorded during quiet standing with eyes open (EO) and closed (EC). CoP adjustments under each leg were recorded to study their contribution to posture control. The spatial structure of the CoP displacements was characterized by measuring the mean distance, the mean velocity of the CoP adjustments, and the sway area. The Entropic Half-Life (EnHL) quantifies the temporal structure of the CoP adjustments and was used to infer disrupted sensory feedback loops in amputees. We expanded the analysis with measures of weight-bearing imbalance and asymmetry, and with two standardized balance assessments, the Berg Balance Scale (BBS) and Timed Up-and-Go (TUG).ResultsThere was no difference in the EnHL values of amputees and controls when combining the contributions of both limbs (p = 0.754). However, amputees presented significant differences between the EnHL values of the intact and prosthetic limb (p < 0.001). Suppressing vision reduced the EnHL values of the intact (p = 0.001) and both legs (p = 0.028), but not in controls. Vision feedback in amputees also had a significant effect (increase) on the mean CoP distance (p < 0.001), CoP velocity (p < 0.001) and sway area (p = 0.007). Amputees presented an asymmetrical stance. The EnHL values of the intact limb in amputees were positively correlated to the BBS scores (EO: ρ = 0.43, EC: ρ = 0.44) and negatively correlated to the TUG times (EO: ρ = − 0.59, EC: ρ = − 0.69).ConclusionThese results suggest that besides the asymmetry in load distribution, there exist neuromuscular adaptations after an amputation, possibly related to the loss of sensory feedback and an altered sensorimotor integration. The EnHL values suggest that the somatosensory system predominates in the control of the intact leg. Further, suppressing the visual system caused instability in amputees, but had a minimal impact on the CoP dynamics of controls. These findings points toward the importance of providing somatosensory feedback in lower-limb prosthesis to reestablish a normal postural control.Trial registrationDRKS00015254, registered on September 20th, 2018.
Highlights
The ability to maintain postural stability is one of the most important aspects of our daily life [1,2,3]
While there was no significant difference between the limbs in the group of controls, the Entropic Half-Life (EnHL) values of the center of pressure (CoP) data produced by the prosthetic leg were significantly larger than the EnHL values of the intact leg
The distance from the CoP mean (DIST) of the intact leg of amputees was significantly larger than the DIST of the dominant and non-dominant leg of controls (p < 0.001)
Summary
The ability to maintain postural stability is one of the most important aspects of our daily life [1,2,3]. Following a lower-limb amputation the ability to maintain balance is severely impaired. Since the stump cannot fully substitute the foot as a proprioceptive organ, the postural control system is reprogrammed and develops compensatory mechanisms to counteract weight-bearing asymmetries, loss of somatosensation, reduced size of support, and an increased joint stiffness [4,5,6,7]. These changes are reflected in alterations of neuromuscular motor outputs such as postural sway during upright standing [5]. We investigated the compensatory mechanisms behind these adaptations and how sensorimotor integration is affected after a lower-limb transfemoral amputation
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have