Abstract
The neuromotor control of the diaphragm muscle (DIAm) is dynamic. The activity of the DIAm can be recorded via electromyography (EMG), which represents the temporal summation of motor unit action potentials. Our goal in the present study was to investigate DIAm neuromotor control during quiet spontaneous breathing (eupnea) in awake rats by evaluating DIAm EMG at specific temporal locations defined by motor unit recruitment and derecruitment. We evaluated the nonstationarity of DIAm EMG activity to identify DIAm motor unit recruitment and derecruitment durations. Combined with assessments of root mean square (RMS) and sum of squares (SS) EMG, the durations of these phases provide physiological information about the temporal aspects of motor control. During eupnea in awake rats (n = 10), the duration of motor unit recruitment comprised 61 ± 19 ms of the onset-to-peak duration (214 ± 62 ms) of the DIAm RMS EMG. The peak-to-offset duration of DIAm EMG activity was 453 ± 96 ms, with a terminating period of derecruitment of 161 ± 44 ms. The burst duration was 673 ± 128 ms. Both the RMS EMG amplitude and the SS EMG were higher at the completion of motor unit recruitment than at the start of motor unit derecruitment, suggesting that offset discharge rates were lower than onset discharge rates. Our analyses provide novel insights into the time domain aspects of DIAm neuromotor control and allow indirect estimates of the contribution of recruitment and frequency to RMS EMG amplitude during eupnea in awake rats.NEW & NOTEWORTHY We characterized three phases of neuromotor control-motor unit recruitment, sustained activity, and derecruitment-based on statistical assessments of stationarity of the diaphragm muscle (DIAm) EMG activity in awake rats. Our findings may allow indirect estimates of the contribution of motor unit recruitment and frequency coding toward generating force and provide novel insights about the temporal aspects of DIAm neuromotor control and descending respiratory drive in unanesthetized animals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have