Abstract

Field-free switching (FFS) and spin-orbit torque (SOT)-based neuromorphic characteristics were realized in a W/Pt/Co/NiO/Pt heterostructure with a perpendicular exchange bias (HEB) for brain-inspired neuromorphic computing (NC). Experimental results using NiO-based SOT devices guided the development of fully spin-based artificial synapses and sigmoidal neurons for implementation in a three-layer artificial neural network. This system achieved impressive accuracies of 91-96% when applied to the Modified National Institute of Standards and Technology (MNIST) image data set and 78.85-81.25% when applied to Fashion MNIST images, due presumably to the emergence of robust NiO antiferromagnetic (AFM) ordering. The emergence of AFM ordering favored the FFS with an enhanced HEB, which suppressed the memristivity and reduced the recognition accuracy. This indicates a trade-off between the requirements for solid-state memory and those required for brain-inspired NC devices. Nonetheless, our findings revealed opportunities by which the two technologies could be aligned via controllable exchange coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.