Abstract
Artificial intelligences are promising in future societies, and neural networks are typical technologies with the advantages such as self-organization, self-learning, parallel distributed computing, and fault tolerance, but their size and power consumption are large. Neuromorphic systems are biomimetic systems from the hardware level, with the same advantages as living brains, especially compact size, low power, and robust operation, but some well-known ones are non-optimized systems, so the above benefits are only partially gained, for example, machine learning is processed elsewhere to download fixed parameters. To solve these problems, we are researching neuromorphic systems from various viewpoints. In this study, a neuromorphic chip integrated with a large-scale integration circuit (LSI) and amorphous-metal-oxide semiconductor (AOS) thin-film synapse devices has been developed. The neuron elements are digital circuit, which are made in an LSI, and the synapse devices are analog devices, which are made of the AOS thin film and directly integrated on the LSI. This is the world's first hybrid chip where neuron elements and synapse devices of different functional semiconductors are integrated, and local autonomous learning is utilized, which becomes possible because the AOS thin film can be deposited without heat treatment and there is no damage to the underneath layer, and has all advantages of neuromorphic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.