Abstract
Many speech processing systems struggle in conditions with low signal-to-noise ratios and in changing acoustic environments. Adaptation at the transduction level with integrated signal processing could help to address this; in human hearing, transduction and signal processing are integrated and can be adaptively tuned for noisy conditions. Here we report a microelectromechanical cochlea as a bio-inspired acoustic sensor with integrated signal processing functionality. Real-time feedback is used to tune the sensing and processing properties, and dynamic switching between linear and nonlinear characteristics improves the detection of signals in noisy conditions, increases the sensor dynamic range and enables adaptation to changing acoustic environments. The transition to nonlinear behaviour is attributed to a Hopf bifurcation and we experimentally validate its dependence on sensor and feedback parameters. We also show that output-signal coupling between two coupled sensors can increase the frequency coverage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.