Abstract

We usually perceive a stationary, stable world despite coherent visual motion induced by eye movements. This astonishing example of perceptual invariance results from a comparison of visual information with internal reference signals (nonretinal signals) predicting the visual consequences of an eye movement. The important consequence of this concept is that our subjective percept of visual motion reflects the outcome of this comparison rather than retinal image slip. To localize the cortical networks underlying this comparison, we compared magnetoencephalography (MEG) responses under two conditions of pursuit-induced retinal image motion, which were identical physically but—due to different calibrational states of the nonretinal signal prompted under our experimental conditions—gave rise to different percepts of visual motion. This approach allows us to demonstrate that our perception of self-induced visual motion resides in comparably “late” parts of the cortical hierarchy of motion processing sparing the early stages up to cortical area MT/V5 but including cortex in and around the medial aspect of the parietooccipital cortex as one of its core elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.