Abstract

Migraine is a very common disorder that imposes substantial individual and societal costs. A better understanding of migraine mechanisms may lead to the development of new therapies and thus improve the management of migraine patients. Magnetic resonance imaging (MRI) techniques and positron emission tomography (PET) have revolutionized our understanding of migraine pathophysiology as a primary central nervous system (CNS) disorder, advanced the search for a central migraine generator, clarified the role of cortical spreading depression (CSD) and central sensitization in the pathogenesis of migraine, and revealed some potential sites of action of migraine medications. Structural imaging has shed light on relationships between migraine and stroke, white matter lesions, iron deposition, microstructural brain damage, and other gray and white matter aberrations. Emerging neuroimaging techniques, such as arterial spin labeling (ASL) and functional connectivity MRI (fcMRI), are beginning to provide further evidence of functional brain alterations in migraine patients. Ultimately, it is hoped that advanced neuroimaging will benefit the individual migraine patient by enhancing our diagnostic abilities, allowing for development of better treatments and serving as an important tool in medical decision-making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.