Abstract

6-Nitrodopamine (6-ND) modulates vas deferens, seminal vesicles, and corpus cavernosum contractility; however, its role on the lower urinary tract organs has not been evaluated. Investigations of isolated urinary bladders from wild-type (WT) mice revealed 6-ND release was comparable to that of dopamine and adrenaline, whereas noradrenaline was hardly detected, as assessed by liquid chromatography coupled to tandem mass spectrometry. In vitro, 6-ND induced concentration-dependent relaxations in carbachol pre-contracted bladders with high potency (pEC50: 8.04 ± 0.86), independently of eNOS/sGC activity. Co-incubation of 6-ND (1–10 μM) antagonizes the contractile effects of acetylcholine (p < 0.05). Experiments using nitric oxide synthase (NOS) knockout mice demonstrated that 6-ND release from isolated urinary bladder was significantly reduced by neuronal NOS (nNOS−/−) deletion and abolished by triple NOSs deletion (n/i/eNOS−/−), while no significant changes were observed in endothelial (eNOS−/−) or inducible (iNOS−/−) knockout mice. Incubation with tetrodotoxin resulted in a significant decrease in 6-ND release in bladders obtained from WT, but not in nNOS−/− mice. The bladders from nNOS−/− and n/i/eNOS−/− mice exhibited significantly higher contractile responses to electric field stimulation (EFS), compared to eNOS−/−, iNOS−/−, or WT bladders. The hyperreactivity observed in triple NOS knockouts was reversed by the incubation with bladder mucosal layer obtained from a donor WT mice, but not with the muscular layer. These findings clearly demonstrate 6-ND is the most potent endogenous relaxing agent of urinary bladder, and inhibition of its release is associated with bladder hyperreactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.