Abstract

Stimulation of cell proliferation and neurogenesis in the adult dentate gyrus has been observed after focal and global brain ischemia but only little is known about the underlying mechanisms. We here analyzed neurogenesis in the dentate gyrus after small cortical infarcts leaving the hippocampal formation and subcortical regions intact. Using the photothrombosis model in adult rats, focal ischemic infarcts were induced in different cortical areas (sensorimotor forelimb and hindlimb cortex) and proliferating cells were labeled at days 3–14 after infarct induction with bromodeoxyuridine. At 2, 4, and 10 weeks after ischemia, immunocytochemistry was performed with immature neuronal (doublecortin), mature neuronal (neuronal nuclei antigen) and glial (calcium-binding protein beta S100β) markers. When compared with sham-operated controls, animals with infarcts in the forelimb as well as hindlimb cortex revealed an increase in survival of newborn progenitor cells at four and 10 weeks after the insult with predominance at the ipsilateral side. Triple immunofluorescence and confocal laser scanning microscopy revealed an increase in neurogenesis in all groups that was more pronounced 10 weeks after the infarct. Application of the N-methyl- d-aspartate (NMDA)-receptor antagonist MK-801 during lesion induction significantly enhanced neurogenesis in the dentate gyrus. An even stronger increase in newborn neurons was observed after anti-inflammatory treatment with indomethacine during the first 16 days of the experiment. The present study demonstrates that small cortical infarcts leaving subcortical structures intact increase neurogenesis in the dentate gyrus and that these processes can be stimulated by N-methyl- d-aspartate receptor blockade and anti-inflammatory treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.