Abstract

This article intends to revisit the electro-diffusional theory for the wall shear stress measurement from mass transfer probes of rectangular shape by considering the existence of two components of the wall shear rate (i.e., axial and transversal). General analytical formulas for the effective transfer length and the dimensionless mass transport coefficient were derived as a function of two parameters: a dimensionless angle of the flow direction, relative to the leading edge of the probe, and the aspect ratio between the width and the length of the strip probe. The correctness of the analytical relations for arbitrary flow direction and the aspect ratio was confirmed by numerical solutions of the transport equation in the convective-diffusive regime. It has also been proved that the differences between the Lévêque solution and the general analytical formula exhibit a significant deviation for a specific range of parameters. In the case of the three-dimensional boundary layers, in addition to the magnitude of the wall shear stress, the direction of the fluid flow in the vicinity of the probe’s surface is of paramount importance. Accordingly, a measurement methodology is proposed using two strip probes with different aspect ratios. The resulting equations required to quantify the magnitude of the wall shear rate vector and the dimensionless angle are also derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call