Abstract

The menopause transition is an important period in a woman's life, during which she is at an increased risk of mood disorders. Estrogen and progesterone fluctuations during the menopausal transition and very low levels of estradiol after menopause have a profound effect on the central nervous system (CNS), causing an imbalance between excitatory and inhibitory inputs. Changes in neurotransmission and neuronal interactions that occur with estradiol withdrawal disrupt the normal neurological balance and may be associated with menopausal symptoms. Hot flushes, depressed mood and anxiety are all symptoms of menopause that are a consequence of the complex changes that occur in the CNS, involving many signaling pathways and neurotransmitters (i.e. γ-aminobutyric acid, serotonin, dopamine), neurosteroids (i.e. allopregnanolone), and neuropeptides (i.e. kisspeptin, neurokinin B). All these pathways are closely linked, and the complex interactions that exist are not yet fully understood. This review summarizes the neuroendocrine changes in the CNS during the menopausal transition, with particular emphasis on those that underlie mood changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.