Abstract

Humans frequently interact with agents whose intentions can fluctuate between competition and cooperation over time. It is unclear how the brain adapts to fluctuating intentions of others when the nature of the interactions (to cooperate or compete) is not explicitly and truthfully signaled. Here, we use model-based fMRI and a task in which participants thought they were playing with another player. In fact, they played with an algorithm that alternated without signaling between cooperative and competitive strategies. We show that a neurocomputational mechanism with arbitration between competitive and cooperative experts outperforms other learning models in predicting choice behavior. At the brain level, the fMRI results show that the ventral striatum and ventromedial prefrontal cortex track the difference of reliability between these experts. When attributing competitive intentions, we find increased coupling between these regions and a network that distinguishes prediction errors related to competition and cooperation. These findings provide a neurocomputational account of how the brain arbitrates dynamically between cooperative and competitive intentions when making adaptive social decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.