Abstract
Angelman syndrome (AS), characterized by motor dysfunction, mental retardation, and seizures, is caused by several genetic etiologies involving chromosome 15q11–q13, including mutations of the UBE3A gene. UBE3A encodes UBE3A/E6-AP, a ubiquitin-protein ligase, and shows brain-specific imprinting, with brain expression predominantly from the maternal allele. Lack of a functional maternal allele of UBE3A causes AS. In order to understand the causal relationship between maternal UBE3A mutations and AS, we have constructed a mouse model with targeted inactivation of Ube3a. The inactive allele contains a lacZ reporter gene for analysis of brain-specific imprinting. Maternal, but not paternal, transmission of the targeted allele leads to β-galactosidase activity in hippocampal and cerebellar neurons. Maternal inheritance of the Ube3a mutant allele also causes impaired performance in tests of motor function and spatial learning, as well as abnormal hippocampal EEG recordings. As predicted from the dependence of UBE3A-mediated ubiquitination of p53 on HPV E6 protein, our maternal-deficient mice show normal brain p53 levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.