Abstract
The control of physiological arousal can assist in the regulation of emotional state. A subset cortical and subcortical brain regions are implicated in autonomic control of bodily arousal during emotional behaviors. Here, we combined human functional neuroimaging with autonomic monitoring to identify neural mechanisms that support the volitional regulation of heart rate, a process that may be assisted by visual feedback. During functional magnetic resonance imaging (fMRI), 15 healthy adults performed an experimental task in which they were prompted voluntarily to increase or decrease cardiovascular arousal (heart rate) during true, false, or absent visual feedback. Participants achieved appropriate changes in heart rate, without significant modulation of respiratory rate, and were overall not influenced by the presence of visual feedback. Increased activity in right amygdala, striatum and brainstem occurred when participants attempted to increase heart rate. In contrast, activation of ventrolateral prefrontal and parietal cortices occurred when attempting to decrease heart rate. Biofeedback enhanced activity within occipito-temporal cortices, but there was no significant interaction with task conditions. Activity in regions including pregenual anterior cingulate and ventral striatum reflected the magnitude of successful task performance, which was negatively related to subclinical anxiety symptoms. Measured changes in respiration correlated with posterior insula activation and heart rate, at a more lenient threshold, change correlated with insula, caudate, and midbrain activity. Our findings highlight a set of brain regions, notably ventrolateral prefrontal cortex, supporting volitional control of cardiovascular arousal. These data are relevant to understanding neural substrates supporting interaction between intentional and interoceptive states related to anxiety, with implications for biofeedback interventions, e.g., real-time fMRI, that target emotional regulation.
Highlights
States of physiological bodily arousal, including increased heart rate, are integral to the expression of negative emotions, including anxiety, and feed back to intensify affective feelings
Behavioral Results Heart rate changed in accordance with the task instructions: across participants, heart rate averaged 76 bpm for the intended arousal condition compared to 72 bpm for the intended relaxation blocks
There was a trend for heart rate to increase more in the accurate biofeedback condition during the intended arousal conditions (Figures 2A and 3A)
Summary
States of physiological bodily arousal, including increased heart rate, are integral to the expression of negative emotions, including anxiety, and feed back to intensify affective feelings. Brain and volitional control of heart rate that target physiological arousal can diminish anxiety symptoms and emotional reactivity (Bonn et al, 1972). Physiological arousal itself accompanies non-emotional behavioral states, notably physical activity, which do not typically evoke negative feelings. One explanation for this discrepancy lies in the predictability and sense of control of internal physiological state mediated by the autonomic nervous system (Paulus and Stein, 2006; Seth, 2013)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.