Abstract

Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. β-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to β-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block μ 1- and κ-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 μg/0.2 μl and 5.0 μg/0.2 μl) was performed in non-anesthetized animals ( Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on μ 1-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses evoked by electrical stimulation of the inferior colliculus, since the threshold of the escape behavior was increased 2 and 24 h after the blockade of κ-opioid receptor. These results indicate that endogenous opioids may be involved in the modulation of fear in the central nucleus of the inferior colliculus. Although the acute treatment (after 10 min) of both naloxonazine and nor-binaltorphimine causes nonspecific effect on opioid receptors, we must consider the involvement of μ 1- and κ-opioid receptors in the antiaversive influence of the opioidergic interneurons in the dorsal mesencephalon, at caudal level, after chronic (2–24 h) treatment of these opioid antagonists. The neuroanatomical study of the connections between the central nucleus of the inferior colliculus and the periaqueductal gray matter showed neuronal fibers with varicosities and with terminal bottons, both in the pericentral nucleus of the inferior colliculus and in ventral and dorsal parts of caudal aspects of the periaqueductal gray matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.