Abstract

Fourier transform infrared (FTIR) spectroscopy is a very flexible technique for characterization of protein secondary structure. Measurements can be carried out rapidly in a number of different environments based on only small quantities of proteins. For this technique to become more widely used for protein secondary structure characterization, however, further developments in methods to accurately quantify protein secondary structure are necessary. Here we propose a structural classification of proteins (SCOP) class specialized neural networks architecture combining an adaptive neuro-fuzzy inference system (ANFIS) with SCOP class specialized backpropagation neural networks for improved protein secondary structure prediction. Our study shows that proteins can be accurately classified into two main classes "all alpha proteins" and "all beta proteins" merely based on the amide I band maximum position of their FTIR spectra. ANFIS is employed to perform the classification task to demonstrate the potential of this architecture with moderately complex problems. Based on studies using a reference set of 17 proteins and an evaluation set of 4 proteins, improved predictions were achieved compared to a conventional neural network approach, where structure specialized neural networks are trained based on protein spectra of both "all alpha" and "all beta" proteins. The standard errors of prediction (SEPs) in % structure were improved by 4.05% for helix structure, by 5.91% for sheet structure, by 2.68% for turn structure, and by 2.15% for bend structure. For other structure, an increase of SEP by 2.43% was observed. Those results were confirmed by a "leave-one-out" run with the combined set of 21 FTIR spectra of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.