Abstract
IntroductionNeuroregeneration is a major challenge in neuroscience for treating degenerative diseases and for repairing injured nerves. Numerous studies have shown the importance of physical stimulation for neuronal growth and development, and here we report an approach for the physical guidance of neuron orientation and neurite growth using superparamagnetic iron oxide (SPIO) nanoparticles and magnetic fields (MFs).MethodsSPIO nanoparticles were synthesized by classic chemical co-precipitation methods and then characterized by transmission electron microscope, dynamic light scattering, and vibrating sample magnetometer. The cytotoxicity of the prepared SPIO nanoparticles and MF was determined using CCK-8 assay and LIVE/DEAD assay. The immunofluorescence images were captured by a laser scanning confocal microscopy. Cell migration was evaluated using the wound healing assay.ResultsThe prepared SPIO nanoparticles showed a narrow size distribution, low cytotoxicity, and superparamagnetism. SPIO nanoparticles coated with poly-L-lysine could be internalized by spiral ganglion neurons (SGNs) and showed no cytotoxicity at concentrations less than 300 µg/mL. The neurite extension of SGNs was promoted after internalizing SPIO nanoparticles with or without an external MF, and this might be due to the promotion of growth cone development. It was also confirmed that SPIO can regulate cell migration and can direct neurite outgrowth in SGNs preferentially along the direction imposed by an external MF.ConclusionOur results provide a fundamental understanding of the regulation of cell behaviors under physical cues and suggest alternative treatments for sensorineural hearing loss caused by the degeneration of SGNs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have