Abstract
Synapse formation is locally determined by transmembrane proteins, yet synaptic material is synthesized remotely and undergoes processive transport in axons. How local synaptogenic signals intercept synaptic cargo in transport to promote its delivery and synapse formation is unknown. We found that the control of synaptic cargo delivery at microtubule (MT) minus ends mediates pro- and anti-synaptogenic activities of presynaptic neurexin and frizzled in C.elegans and identified the atypical kinesin VAB-8/KIF26 as a key molecule in this process. VAB-8/KIF26 levels at synaptic MT minus ends are controlled by frizzled and neurexin; loss of VAB-8 mimics neurexin mutants or frizzled hyperactivation, and its overexpression can rescue synapse loss in these backgrounds. VAB-8/KIF26 is required for the synaptic localization of other minus-end proteins and promotes the pausing of retrograde transport to allow delivery to synapses. Consistently, reducing retrograde transport rescues synapse loss in vab-8 and neurexin mutants. These results uncover a mechanistic link between synaptogenic signaling and axonal transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.